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ABSTRACT 

In situ staining of a target mRNA at several time points during the 
development of a D. melanogaster embryo gives one a detailed 
spatio-temporal view of the expression pattern of a given gene.  
We have developed algorithms and software for analyzing a data-
base of such images with the goal of being able to identify coor-
dinately expressed genes and further our understanding of cis-
regulatory control during embryogenesis. Our approach combines 
measures of similarity at both the global and local levels, based 
on Gaussian Mixture Model (GMM) decompositions. At the 
global level, the observed distribution of pixel values is quantized 
using an adaptive GMM decomposition and then quantized im-
ages are compared using mutual information. At the local level, 
we decompose quantized images into 2-dimensional Gaussian 
kernels or "blobs" and then develop a blob-set matching method 
to search for the best matching traits in different pattern-images. 
A hybrid scoring method is proposed to combine both global and 
local matching results. We further develop a voting scheme to 
search for genes with similar spatial staining patterns over the 
time course of embryo development. To evaluate the effectiveness 
of our approach, we compare it with several global image match-
ing schemes and a controlled vocabulary method. We then apply 
our method to 4400 images of 136 genes to detect potentially co-
regulated genes that have similar spatio-temporal patterns, using 
expert-annotation to evaluate our results.   

Categories and Subject Descriptors 

H.3.3 [Information Storage And Retrieval]: Information Search 
and Retrieval – search process. I.4.7 [Image Processing And 
Computer Vision] Feature Measurement – feature representa-
tion, size and shape. I.4.10 [Image Processing And Computer 
Vision]: Image Representation – statistical, hierarchical, morpho-
logical. I.5.4 [Pattern Recognition] Applications – signal proc-
essing. J.3 [Life And Medical Sciences] Biology and genetics.   

 

General Terms 

Algorithms, Design. 

Keywords 

In situ hybridization, Embryogenesis, Gene expression, Gaussian 
mixture model, Image matching, Drosophila. 

1. INTRODUCTION 
Understanding the roles of genes and their complicated relation-
ships is one of the central themes of genome research. One popu-
lar approach is based on the analysis of microarray-gene-
expression data (e.g. [5]), which currently can only be applied to a 
sizeable collection of cells such as an entire embryo or "tissue" 
sample. Such experiments thus reveal only the average expression 
levels over the sample, failing to observe any potentially pivotal 
spatial patterns of expression. It is possible that two completely 
unrelated genes could have similar global expression levels 
through a time series, but have completely different spatial pat-
terns. To understand co-expression in any multi-cellular tissue or 
organism, it is clearly desirable to examine the spatial patterns of 
a gene's expression. 

The in situ hybridization technique localizes specific mRNA se-
quences in morphologically preserved tissues/cells by hybridizing 
the complimentary strand of a nucleotide probe to the sequence of 
interest. In situ embryogenesis Staining Pattern (SP) images of 
Drosophila melanogaster are now available (e.g. [1][19][17]), for 
example, that of the Berkeley Drosophila Genome Project 
(BDGP) (www.fruitfly.org) [1]. At this time, this growing data-
base contains 33699 images of 1711 genes. These SP images 
show where and when a target gene is expressed during embryo-
genesis. 

It is believed that comparison of these SPs can be a very powerful 
way to understand the roles of genes and solve many related prob-
lems such as finding co-regulated genes [2][9][6][15]. The current 
method of classifying these images in the BDGP database is the 
manual assignment of terms from a controlled ontology vocabu-
lary to each image [16]. This approach depends entirely on ex-
perts who are familiar with Drosophila embryogenesis. Alterna-
tively, in this paper we propose image analysis algorithms to 
automatically compare Drosophila melanogaster embrogenesis 
SPs, with the goal of finding potentially co-regulated genes.  

There are several possible ways of automatically matching SP 
images, including (1) global matching, (2) local feature (trait) 
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matching, and (3) hybrid methods combining both global and 
local information. Global matching involves evaluating the simi-
larity of the entire SP of one embryo to that of another, giving a 
ranking of similarity. Local matching involves finding portions 
(traits) of two SPs that are similar in shape and intensity variation.  
In this paper, we present a hybrid-Gaussian-Mixture-Model 
(GMM) paradigm to combine both global and local matching. 
This novel method is called hybrid-GMM-matching.  

Our approach consists of four parts: image preprocessing (§2), 
global GMM decomposition and matching (§3), local GMM de-
composition and matching (§4), and a hybrid method to detect 
genes with the similar spatio-temporal SPs (§5). A simple illustra-
tion can be seen in Fig.1: we use the image preprocessing module 
to extract the regions covered by an embryo (Fig.1 (b)) from input 
images (Fig.1 (a)), and register these embryos (Fig.1 (c)) so that 
they can be effectively compared. A global-GMM-decomposition 
method identifies and models the entire staining pattern (Fig.1 
(d)).  Our local-GMM-decomposition represents an SP as a set of 
blobs (Fig.1 (e)), upon which SP traits can be better matched.  

Despite the fact that there exist many matching methods for gen-
eral image retrieval, there is little earlier work in automatic analy-
sis and comparison of embryogenesis SP images. For a dataset of 
about 900 embryo images of the early developmental stage, 
Kumar et al [9] binarized the embryo images and used a ratio of 
overlapping pixels as the score to measure the similarity between 
SPs. It can be classified as a global matching method. Other pos-
sible global matching methods include global correlation coeffi-
cient matching (or other similarity/distance scores), and histogram 
and shape matching (as used in color- and shape-based image 
retrieval [10][7]). In §6, we will compare our new methods and 
several global matching schemes, as well as the controlled-
vocabulary annotation method of [16].  

In §7, we apply the hybrid method to 4400 SP images to demon-
strate the strength of the new method in finding potential co-
regulated genes that have similar spatio-temporal SPs during em-
bryo development. The automatic analysis results are also com-
pared to the manual annotations. 

 
RhoGAP71E (image#23683) 

 

 

Dcp-1 (image#29604) 

 

 

(a) Input images (b) Extracted      
embryos 

(c) Registered     
embryos (d) Extracted SPs (e) Blob-set         

representation 

Figure 1. Steps of our method in building representations of embryogenesis Staining Patterns (SP). Each row corresponds to a SP 
image of a gene whose name and image number are given in (a). We first use basic image processing techniques to obtain standard-
ized embryos (c). Then we use GMM decompositions to build both global representations (d) and local representations (e) of SPs. 
In (a)-(c), the darker the stain, the stronger the in situ expression of the respective gene. Different colors in (d) indicate different 
expression levels detected by clustering pixels based on intensity or color (see §3). Different colors in (e) indicate different SP traits 
detected by clustering pixels based on spatial locations (see §4).  
 

2. IMAGE PREPROCESSING 
Image preprocessing, including embryo extraction and registra-
tion, is a common module needed in any image comparison meth-
ods. For example, a simpler preprocessing method was also used 
in [9].  

2.1 Embryo Extraction 
The embryogenesis image-acquiring protocol requires that in a 
qualified SP image, there is a major centered embryo. The em-
bryo extraction step is to segment an input image to separate the 
main embryo from the background, which presumably contains 
no information. Typically, the image background (water) often 
has shadows and the embryo boundary is often fuzzy. Hence, a 

single threshold on image-pixel intensity is insufficient to extract 
the embryo.  

We note the image background and the embryo region have dif-
ferent local texture properties, i.e. the standard deviation of the 
embryo region is much larger than that of the background region. 
This is because the reflectance of the water-background is almost 
uniform everywhere and the illumination gradually changes; on 
the contrary, the central embryo has rich variation of the reflec-
tance, and the illumination around the image-center is almost 
uniform.  

Hence, for each image-pixel, we calculate the standard deviation 
of the local window (e.g. 3×3) around it. The pixel is binarized to 
"foreground" if the deviation is larger than a predefined threshold 
(e.g. 2), otherwise to "background". Binarization puts most em-
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bryo pixels as "foreground" and most background pixels "back-
ground". Next, a simple 8-neighbor-connectivity region-growing 
method is used to find the contour of the embryo. Every pixel 
within the contour is considered to be in the extract embryo. Two 
examples of extracted embryos are shown in Fig. 1 (b). 

With the above method, the major embryo region that presumably 
covers the center of the image can be effectively extracted. For 
example, for the 4400 SP images used in §7, we visually examine 
the quality of the extracted embryos and find the above method 
can consistently produce satisfactory embryo regions, as long as 
an input image does not contain multiple touching embryos. 

2.2 Embryo Registration 
Embryo registration involves arranging the embryos so that they 
can be compared directly at the pixel level. This step is critical for 
global matching of embryos. For local matching, registration is 
also important because it provides a standard space where local 
features can be measured with the same "ruler" and identified 
more easily. 

Our registration module performs an affine transform [7][8], and 
intensity rescaling. First the longest axis is detected using a stan-
dard principal component analysis method [7].  Then the embryo 
is rotated and scaled so that the longest axis is horizontal and its 
extent is a preset size (e.g. 300 pixels wide and 200 pixels high).  
Then pixel values are linearly transformed so the observed values 
span the interval [0,255]. Two examples of registered embryos are 
shown in Fig. 1 (c). 

 

   

Figure 2. An example of the same embryo with four different 
orientations.  

 
Note that this process does not determine the anterior - posterior 
or dorsal - ventral orientation of the embryo. Thus in what fol-
lows, whenever we compare a pair of embryos X and Y we con-
sider flipping X vertically, horizontally, and both as in Fig. 2, and 
take the best correspondence over the four comparisons as the 
orientation-invariant similarity between X and Y. 

Although it is possible to consider more sophisticated registration 
methods (e.g. automatically locate landmarks and warp to a preset 
template embryo), our visual inspection confirms that the above 
method is effective in producing meaningful registration results 
for the 4400 images used in §7.  

3. A GLOBAL GMM  MATCHING 
METHOD 

The most direct way of global matching is pixel-by-pixel embryo 
comparison. Kumar et al [9] used the ratio of overlapping fore-
ground pixels in binarized SP images. Analogous schemes that do 
not require binarization of pixel values include taking Euclidean 
distance, correlation coefficient, etc, across corresponding pixels.  

A second type of global matching is to compare the pixel inten-
sity distributions of embryos. The intuitive method is to compare 

the histograms of two embryos. However, histogram matching 
ignores the fact that expressions occurring at quantized levels 
vary from image to image and does not compare the in situ infor-
mation in embryos. 

Our global Gaussian-Mixture-Model (GMM) matching method 
combines both pixel comparison and the distribution comparison 
by first dynamically decomposing the intensity distribution into a 
number of staining levels using GMMs (§3.1), and then using a 
mutual information measure between quantized images (§3.2). 
This allows us to probe if two SPs have similar in situ distribu-
tions. By modeling only the in situ pixel-distributions, the unex-
pressed embryo regions are excluded from consideration. Like 
noise removal, this leads to better matching of the most interest-
ing features of the SPs. 

3.1 Staining Level Extraction Based on 
GMM Decomposition 

In an embryo, there are typically several distinct expression levels 
and each is assumed to generate a roughly Gaussian distribution 
of pixel values centered around the respective mean expression 
level. Thus we expect the distribution of pixel values, hI-Embryo(c), 
for c in [0,255] to be a mixture of Gaussians, i.e.  

hI−Embryo(c) = Σk=1
K ukGk (c) , (1) 

where c is the pixel intensity (or color), K is the unknown number 
of stain levels, Gk(c) is the kth Gaussian kernel to represent the 
color, and uk is the weight of the respective kernel. Note that if we 
have 3-component color information, then Gk is 3-dimensional 
Gaussian kernel, and if we have grayscale information, then Gk is 
a 1-dimensional kernel. Given this assumption of distribution, we 
seek to find the number of levels K and their Gaussians. 

With the model in Eq. (1), we want to find the best parameters to 
solve the following posterior maximization problem,  

maxP(hI−Embryo | DI−Embryo), (2) 

where DI-Embryo is the part of embryo data being considered. For an 
assumed K, we can use the Expectation-Maximization (EM) 
method to solve Eq. (2) and find the optimal pixel-clustering re-
sults.  A description of the standard EM algorithm is omitted here 
but can be found in many textbooks [11][18].  

Because the stronger in situ expression levels correspond to the 
darker stains in embryo, among the K Gaussian kernels, the one 
with the smallest mean value most likely represents an expression 
level. This idea can be explicitly described as the following algo-
rithm, which progressively identifies all expression staining lev-
els.  

(1) Initially, the data DI-Embryo contains all pixels in an embryo. 
The mean intensity of all embryo pixels is m. 

(2) The EM method is used to find a GMM with K kernels. De-
note the kernel with the smallest mean value as G1

*, and the 
mean intensity of all pixels represented by this kernel as m1. 
If m1 < m, then we consider G1

* to represent a stain level.   

(3) We assign all pixels represented by G1
*
 as having the stain 

level 1, eliminate them from the pixel set DI−Embryo. We re-
peat step (2) to find a new GMM-decomposition whose ker-
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nel with smallest mean is G2
* with mean intensity m2.  If m2 

< m, then G2
* is considered to represent a new stain level. 

Otherwise the algorithm stops, the reason being that if the 
most probable (darkest) kernel does not represent a stain 
level, then other less likely pixels will not be stain.  

(4) Eventually, this algorithm returns NGlobal Gaussian kernels, 
each of which is obtained in a run of the GMM decomposi-
tion.  

The result of this procedure is that we identify NGlobal positive 
staining levels each modeled by a Gaussian Gi

* and weight ui that 
in aggregate give us a model of the distribution of in situ pixel 
values, hI−Stain: 

*
1 ii

GlobalN
i

StainI Guh =
− Σ= . (3) 

Two SP examples are shown in Fig. 1 (d), where different colors 
are used to mark the most probable staining level at each pixel. 
Note that by modeling only the in situ distributions of the SP, but 
not the whole embryo, we exclude irrelevant information. This 
improves both accuracy and robustness of the analyses that fol-
low. 

We call the above procedure the global-GMM-decomposition 
algorithm. There are three remaining issues. First, we used a pre-
set number of kernels, K, in each run of the EM algorithm in Step 
2. Because we aim to accurately estimate only the kernel with the 
smallest mean out of K kernels, a convenient approach is to sim-
ply set K as intermediate value like 4 or 5. Setting K too small 
introduces many false-positive pixels in Gi

*, while setting K too 
large will exclude many false-negative pixels. A mid-ranged K 
leads to kernels with reasonably compact and homogeneous dis-
tribution. An alternative is to adaptively choose K to maximize 
the posterior probability of a K-part GMM, e.g. argmaxK 
P(hI−Embryo | DI−Embryo) [14]. We have tried both methods and found 
they give comparable results. 

Second, our method considers only the distribution of pixel inten-
sity. We refine this method by integrating local spatial informa-
tion. A general way to do this is to find small patches of pixels 
within which pixel-intensity is relatively homogeneous, and then 
use the mean intensity of the patch to represent all pixels within 
this patch. Instead of local image scanning to seek arbitrarily 
shaped small patches, we use a simple method of generating small 
square patches (e.g. 9×9 pixels), which is effectively the image 
downsampling. Compared to other possible methods such as 
Gaussian smoothing, this method does not consider overlapping 
patches.    

Finally, by considering the embryo as a collection of homogene-
ously colored patches, the number of data points is greatly re-
duced. For example, a 9×9 patch reduces the number of data 
points to less than 2% of the original amount. Accordingly, the 
speed of EM method in Step 2 is much faster than the original one 
and the slow speed of EM is no longer an issue for our applica-
tion.  

3.2 Matching with Mutual Information 
Eq. (3) is a distribution function of SP pixels at specific spatial 
locations. During the decomposition algorithm each non-
background pixel is assigned to a quantized expression level when 

it is subtracted from the remnant distribution in Step 3.  We can 
then ask questions like "do two embryos have similar in situ stain 
distributions of expression levels?"  

Given two quantized SPs X and Y, we use mutual information to 
examine whether their in situ stain distributions have strong de-
pendency on each other. Mutual information [4] has the form 
sMI(X,Y) = ΣX,Y P(X,Y)log{P(X,Y)/[P(X)P(Y)]}, where P(X,Y) is 
the joint distribution, P(X) and P(Y) are the marginal distributions. 
Mutual information describes the statistical dependency of SPs. 
The larger sMI(X,Y), the stronger dependency between X and Y. 
Because sMI(X,Y) is upper-bounded by the minimum of the entro-
pies of X and Y (i.e. min(H(X),H(Y))), and lower-bounded by 0, 
we use the normalized mutual information (range is [0,1]) as the 
global similarity score of any SP-pairs,  

sGlobal (X,Y ) = 2 ⋅ sMI (X ,Y )

H (X) + H (Y )
. (4) 

Effective calculation of mutual information often requires X and Y 
are categorical variables with a small number of states. Note that 
the extracted SP using our global GMM decomposition has only a 
limited number, NGlobal, of expression levels. Hence, this represen-
tation is suitable for mutual information calculation. From a per-
spective of signal/image processing, our global GMM decomposi-
tion is an adaptive quantization scheme.  

4. A  LOCAL  GMM  MATCHING  
METHOD 

In §3, the intensity distribution of an extracted SP is modeled 
using GMMs (Eq. (3)).  However, spatially the SP is irregularly 
distributed in the 2-dimensional image plane (i.e. it is irregularly 
shaped, as shown in Fig. 1 (d)). It is often hard to directly com-
pare the shapes of entire SPs. In addition, under many circum-
stances it is not necessary to compare the whole SP against others, 
because co-regulated genes do not necessarily have exactly the 
same stains at every spot.  Instead, they might share only some 
local traits. This raises the issue of how to represent a stained 
image in term of traits that will serve as the basic components in 
matching. 

We develop a local GMM decomposition method to model an SP 
as a collection of spatially distributed traits or “blobs” (§4.1). This 
provides a way to identify the traits of any SP. We also propose a 
score for SPs based on comparing the blob decomposition (§4.2). 

4.1 Blob Extraction Based on            
GMM Decomposition 

We assume that the spatial distribution of a SP can be modeled as 
the union of a series of component blocks. Within each block, the 
spatial coordinates of SP are compact enough to comprise a small 
spatially distributed cluster. A simplest way is the rectangular 
blocks. While this has been shown to be very useful in other ap-
plications (e.g. [13][12]), it is less optimal for SPs because most 
SP components are closer to oval than rectangle. Hence, we pro-
pose to model the SP spatial distribution hS−Stain(x,y) (x and y are 
spatial coordinates) using GMM:  



161 

),(),(
1

yxGvyxh K

k kk
StainS ∑ =

− = , (5) 

where vk is the coefficient of the kth 2-dimensional Gaussian ker-
nel Gk(x,y).  

The EM algorithm is used again to find the parameters of Eq. (5), 
so that the following posterior is maximized: 

)|(max StainSStainS DhP −− , (6) 

where the data DS−Stain contains the pixel coordinates (x,y) for the 
current expression level. We use the adaptive method [14] to de-
termine the optimal number of kernels, K.  

We do the local-GMM-decomposition for every stain level in the 
SP. Note that for each stain level, the intensity-distribution of the 
respective pixels has been assumed homogeneous. Thus, there is 
no need to incorporate the pixel-intensity information in Eq. (6). 

Local-GMM-decomposition leads to a new representation of the 
SP, consisting of a set of blobs (ellipses). We call it the blob-set 
representation B, similar to the blobworld representation for gen-
eral image retrieval [3]. One natural way to represent each blob is 
a Gaussian kernel, as suggested in Eq. (5). However, a more ef-
fective way is to represent the blob using the pixels covered by 
this blob. Hence, each blob b is a function of the stain level of the 
associated pixels, g, and the spatial locations of all these pixels, l. 
Suppose that there are N blobs in a SP, the blob-set representation 
B has the following form, 

U
N

i
lgbB

1
),(

=
= . (7) 

Since there are NGlobal stain levels in a SP, and for the ith stain-
level we can solve Eq. (6) and obtain Ki blobs, the total number of 

blobs in an SP is i

GlobalN
i KN 1=Σ= . 

Compared to the blobworld representation developed in [3] which 
models the joint color-texture-location distribution of pixels using 
Gaussian kernels, our blob-set representation is based only on the 
pixel location information, of each different stain level. While 
simpler our model has several advantages for this application 
domain: (1) it allows generation of both global and local represen-
tations and more flexible SP matching schemes, (2) it is computa-
tionally more efficient, and (3) it is empirically more accurate 
because GMM decomposition degrades with increasing dimen-
sionality.  

4.2 Matching with Blob Sets 
The blob-set representation provides rich information for a variety 
of SP-analysis. Here we only consider using this representation to 
examine the similarity of SPs. Suppose that we have two blob-sets 
BX and BY of two SPs X and Y (with NX and NY blobs, respec-
tively). For every blob bi

X in BX, we search in BY the blob with the 
largest similarity, denoted as bi*

Y. The respective similarity is 
denoted as sBlob(bi

X, bi*
Y). Similarly, for every blob bj

Y in BY, we 
search in BX the blob bj*

X with the largest similarity sBlob(bj
Y,bj*

X). 
We define the following similarity to score how two blob-sets 
resemble each other, 

∑∑ ==
+

=
YX N

j
X
j

Y
j

BlobN

i
Y
i

X
i

Blob

YXLocal

bbsbbs

BBs

1 *1 * ),(),(

),(
 (8) 

where the similarity of two blobs, sBlob(.), is defined below (Eq. 
(9)). Note that Eq. (8) allows a blob in one set be matched to mul-
tiple blobs in the other set. The symmetric form makes the score 
more robust to local variations.  

If two blobs are spatially overlapping, they are similar to each 
other to some degree. The larger the overlapping, the more similar 
these two blobs. Hence, the ratio of overlapping pixels out of the 
total area of the two blobs is an index of their similarity. Addi-
tionally, two overlapping blobs are more similar if their stain 
levels gX and gY are closer. These constraints can be written as the 
similarity between two blobs in Eq. (9),  

)(
)(

]
256

||1[),( YX

YXYX
YXBlob

ll
llggbbs

∪Ω

∩Ω
⋅

−
−=  (9) 

where Ω(.) is the operator to calculate area, lX and lY are respec-
tive spatial locations of blob pixels.  

5. HYBRID MATCHING METHOD 

5.1 Combining Global and Local Matching 
We propose the multiplication in Eq. (10) to combine the global-
matching score sGlobal and the local matching score sLocal. This 
avoids the problem of the different scales of sGlobal and sLocal. 

LocalGlobalHybrid sss ⋅= . (10) 

In image matching, an efficient way is to first use the global 
matching to filter out the unlikely matching SPs for a query SP, 
then the local matching is done in a significantly smaller pool of 
candidate SPs. Eq. (10) is still used to score the SPs that pass the 
global matching. We sort the scores from large to small and pro-
duce a ranking list; the top ranking SPs are most similar to the 
query SP. 

5.2 A Voting Method to Detect Genes with 
Similar Spatio-Temporal Patterns 

Genes co-regulated by the same transcriptional factor are likely to 
have the similar spatio-temporal SPs over a range of embryo de-
velopmental stages. Based on the score in Eq. (10), we design the 
following voting method to detect genes that have similar spatio-
temporal SPs. 
Voting means summarization of the image matching results of all 
developmental stages. The 16 developmental stages of Drosophila 
embryogenesis are often categorized as 6 main phases (stages 1-3, 
stages 4-6, stages 7-8, stages 9-10, stages 11-12, and stages 13-
16) [1]. Thus, we do a phase-by-phase spatial matching. Suppose 
the input data consist of SP images of a query gene Q and a pool 
of candidate genes L in which the spatio-temporally similar pat-
terns are searched. For each phase, we search the matching genes 
in L whose SPs are similar to those of the query Q. Since that for 
any phase usually there are multiple images for a gene, we say 
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that two genes have matching patterns if they have at least one 
similar SP-pair for this phase. The similarity of this SP-pair is 
used to indicate the similarity of these two genes at this phase (if 
there are multiple matching pairs, then use the largest similarity 
value). As a result, for each phase we obtain a ranking list of 
matching genes. These ranking lists are summarized to produce 

the spatio-temporal matching list. Obviously, if a candidate gene 
appears at top of multiple ranking lists of multiple phases, this 
gene is highly probable to have similar spatio-temporal patterns 
with the query gene Q. 
 

 
Acf1 

 
ventral ectoderm anlage 
posterior endoderm anlage 
hindgut anlage 
anterior endoderm anlage 
trunk mesoderm anlage 
head mesoderm anlage 

pont 

 
ventral ectoderm anlage 
posterior endoderm anlage 
hindgut anlage 
anterior endoderm anlage 
trunk mesoderm anlage 
head mesoderm anlage 

mam 

 
ventral ectoderm anlage 
posterior endoderm anlage
hindgut anlage 
trunk mesoderm anlage 
head mesoderm anlage 

Slbp 

 
ventral ectoderm anlage 
posterior endoderm anlage 
hindgut anlage 
anterior endoderm anlage 
trunk mesoderm anlage 
procephalic ectoderm anlage
head mesoderm anlage 

Dcp-1 

 
ventral ectoderm anlage 
posterior endoderm anlage 
anterior endoderm anlage 

RhoGAP71E 

 
ventral ectoderm anlage 
posterior endoderm anlage
anterior endoderm anlage 

cl 

 
posterior endoderm anlage 
trunk mesoderm anlage 
head mesoderm anlage 

CG33099 

 
posterior endoderm anlage 
anterior endoderm anlage 
trunk mesoderm anlage 
head mesoderm anlage 

GATAe 

 
posterior endoderm anlage
anterior endoderm anlage 

CG5525 

 
posterior endoderm anlage 

CG6051 

 
posterior endoderm anlage 

 

Figure 3. 11 SP images with the expert-annotation "posterior endoderm anlage". Each image is arbitrarily selected for a gene, just 
for the experimental illustration. The input images are 24-bit RGB images (1520×1080 pixels), which are converted to grayscale 
image in matching. The extracted embryos are registered as 400×200 images. We underline the annotation "ventral ectoderm 
anlage" to indicate the most reasonable matching images when the query-image belongs to gene Acf1. 
 

6. EXPERIMENTAL  COMPARISON  OF 
DIFFERENT  MATCHING  METHODS 

Before addressing a real application in §7, we use some small 
datasets to investigate whether or not our methods improve 
matching compared to several other scoring methods. Due to 
space limitations, we only include one example in this section.  
We use SP images of the top genes returned by the BDGP image 
anatomy ontology server, ImaGO [1], for the term "posterior en-
doderm anlage", which is present in embryonic developmental 
stages 7-8, or phase 3. These genes and their SP images are shown 
in Fig. 3. For image matching we convert the blue color images to 
grayscale.  
The expert-annotation results extracted from the BDGP database 
[1] (also listed in Fig.3) are used as the "ground truth" to evaluate 
the results. Since these 11 images share the same annotation "pos-
terior endoderm anlage", they must have some extent of similar-
ity. However, as indicated by the additional annotations for every 
image, other traits of these images are not necessary the same. 
Hence, the most similar SP images should have the largest num-
ber of common annotations. For example, if we use the image of 
gene Acf1 as the query, according to the annotation results in 
Fig.3, the top ranking images should belong to the following 
genes: pont, mam, Slbp, Dcp-1, and RhoGAP71E, because they 
share the most annotations such as "ventral ectoderm anlage". The 

image of pont should be in the first place in the matching list, 
since it shares the same set of 6 annotations with Acf1.  
Fig. 4 shows the image matching results for the query Acf1. The 
2nd to 4th columns are results using three whole-embryo match-
ing methods. There are some clear problems in these results. First, 
some images' ranks are incorrect. For example, the image of gene 
mam ranks 10th using the OverlapRatio method (ratio of overlap-
ping staining pixels, as used in [9]), 8th using the CorrCoef 
method (correlation coefficient), and 11th using whole-embryo 
mutual information scoring (the 4th column). These results are 
clearly inconsistent with what are expected from the expert-
annotations (Fig. 3) or a simple visual inspection, because the 
mam image is similar to Acf1, and should have a relatively high 
ranking. Second, similarity scores are very close to each other in 
value, so that for a given query, it is unclear where the border is 
between similar and dissimilar images. For example, for the Over-
lapRatio method, scores for the 3rd to 11th best match range from 
0.62 to 0.51. It is hard to use such undifferentiated scores for re-
trieval or clustering.  
The reason for these unsatisfactory results is that scoring the cor-
respondence in the background and minor variations in expression 
level clusters creates unwanted noise. Our new methods, as shown 
in the 3 rightmost columns, overcome these problems. For exam-
ple, in the 5th column, the global GMM matching method extracts 
SPs from embryos and compares them using mutual information 
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(as in §3.2). Unlike the whole-embryo mutual information match-
ing results in the 4th column, the global-GMM-matching results 
do not have apparent inconsistency with the expert annotations. In 
addition, the small scores at the bottom rows of Fig.4 (e.g. 0.02 
between GATAe and Acf1) clearly indicate that these images are 
dissimilar from the query. These show that the explicit extraction 
of an SP model and subsequent comparison of the models is supe-
rior to whole-embryo pixel comparisons.  

The local GMM matching (blob-set matching, in the 6th column) 
performs comparably to global GMM matching. However, be-
cause local traits are identified and compared in this method, it is 
able to tell that the mam image has more similar traits to Acf1 
than Dcp-1 does. This is consistent with the expert-annotations.  
   

 

Query OverlapRatio 
(Kumar) CorrCoef Mutual Info 

(Whole embryo) 
Stain Pattern 

(Global GMM) 
Blob-set 

(Local GMM) Hybrid 

Acf1 

 

[1] 1 Acf1 

 

[1] 1 Acf1 [1] 1 Acf1 [1] 1 Acf1 [1] 1 Acf1 

 

[1] 1 Acf1 

 
 [2] 0.74 pont 

 

[2] 0.87 pont 

 

[2] 0.21 pont 

 

[2] 0.32 pont 

 

[2] 0.32 pont 

 

[2] 0.102 pont 

 
 [3] 0.62 Dcp-1 

 

[3] 0.83 Dcp-1 [3] 0.20 Dcp-1 [3] 0.19 Dcp-1 [3] 0.30 mam 

 

[3] 0.051 mam  

 
 [4] 0.62 CG5525 

 

[4] 0.77 Slbp [4] 0.19 Slbp [4] 0.17 mam [4] 0.24 RhoGAP71E 

 

[4] 0.042 Dcp-1 

 
 [5] 0.62 Slbp 

 

[5] 0.72 RhoGAP71E [5] 0.17 RhoGAP71E [5] 0.16 RhoGAP71E [5] 0.22 Dcp-1 

 

[5] 0.038 RhoGAP71E 

 
 [6] 0.58 RhoGAP71E 

 

[6] 0.71 CG5525 [6] 0.16 CG33099 [6] 0.13 Slbp [6] 0.20 Slbp 

 

[6] 0.026 Slbp 

 
 [7] 0.58 CG6051 

 

[7] 0.71 cl [7] 0.16 CG5525 [7] 0.11 cl [7] 0.18 CG5525 

 

[7] 0.019 cl 

 
 [8] 0.56 cl 

 

[8] 0.69 mam [8] 0.16 cl [8] 0.10 CG5525 [8] 0.17 cl 

 

[8] 0.018 CG5525 

 
 [9] 0.55 CG33099 

 

[9] 0.59 CG6051 [9] 0.15 GATAe [9] 0.07 CG6051 [9] 0.12 CG6051 

 

[9] 0.008 CG6051 

 
 [10] 0.53 mam 

 

[10] 0.57 CG33099 [10] 0.14 CG6051 [10] 0.05 CG33099 [10] 0.07 GATAe 

 

[10] 0.002 CG33099 

 
 [11] 0.51 GATAe 

 

[11] 0.42 GATAe [11] 0.14 mam [11] 0.02 GATAe [11] 0.04 CG33099 

 

[11] 0.001 GATAe 

 

Figure 4. Matching results for the query Acf1. Each column gives the ranking list for a method. On top of the each image, the 
string shows information about the match of this image to the query: the number in brackets is the ranking; the next number is the 
similarity score between this image and the query; and the gene name is shown last. The background of some of the lower cells is 
marked gray to indicate that their similarity with the query is not as significant as that of the images above them. Note that we also 
put the query image of Acfl itself in the ranking and it is the first-matched image for every method. The respective scores are pro-
vided as the baseline to normalize the similarity between other images and the query. 
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Gene 
Phase CG3136 Ance ush 

1 stage1-3 

 
 maternal 

 
 

 
 

2 stage4-6 

 anlage in statu nascendi 
 cellular blastoderm ♥ 
 subset ♦♥ 

 subset ♦ 
 

 cellular blastoderm ♥ 
 subset ♥ 
 yolk nuclei 

3 stage7-8 
 procephalic ectoderm primordium 
 dorsal ectoderm anlage ♦♥ 
 procephalic ectoderm anlage ♦♥ 
 dorsal ectoderm 

 hindgut anlage 
 anterior endoderm anlage 
 dorsal ectoderm anlage ♦ 
 procephalic ectoderm anlage ♦ 

 
 dorsal ectoderm anlage ♥ 
 procephalic ectoderm anlage ♥ 
 head mesoderm anlage 

4 stage9-10  anterior endoderm primordium ♦ 
 posterior endoderm primordium ♦ 
 external foregut primordium 
 proventriculus primordium 
 dorsal ectoderm primordium ♥ 

 anterior endoderm primordium ♦ 
 inclusive hindgut primordium 
 posterior endoderm primordium ♦ 

 
 dorsal ectoderm primordium ♥ 
 head mesoderm P2 primordium 

5 stage11-12 
 anterior midgut primordium ♦ 
 dorsal epidermis primordium ♥ 
 proventriculus primordium 
 posterior midgut primordium ♦ 

 anterior midgut primordium ♦ 
 posterior midgut primordium ♦ 
 Malpighian tubule primordium 

 
 antennal primordium1 
 dorsal epidermis primordium ♥ 

6 stage13-16  amnioserosa ♦ 
 embryonic/larval endocrine system ♦
 embryonic proventriculus ♦ 

 amnioserosa ♦ 
 embryonic/larval endocrine system ♦
 lymph gland 
 embryonic hindgut 
 embryonic proventriculus ♦ 

 
 sensory nervous system primordium 
 ventral midline 
 embryonic head epidermis 
 need new term(sensory system head) 
 embryonic dorsal epidermis 

Microarray  
expression  

level 

   
Figure 5. An example of the detected genes CG3136 (query), Ance, and ush, which have similar spatio-temporal patterns. For each 
gene at each phase, one or two representative embryo images are shown, followed by the expert-annotations (extracted from [1]). A 
"♦" is used to mark the common annotations between genes CG3136 and Ance, and a "♥" for those between CG3136 and ush. For 
comparison, the microarray expression levels during the embryogenesis are also shown at the bottom.  
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Our hybrid GMM matching method (the right-most column) gives 
the best results. The rankings of pont, mam, Dcp-1, etc are consis-
tent with the expert-annotations, as well as both the global- and 
local-GMM-matching results. The similarity score shown in 
brackets on top of each image is a product of the respective scores 
of global- and local-GMM-matching. For example, for mam the 
score is 0.051, which is the product of 0.17 (the global-GMM-
matching score) and 0.30 (the local-GMM-matching score). We 
see that the hybrid method presents a nice balance of the global 
and local matching schemes. 
All of our three methods have the strength to differentiate dissimi-
lar SPs, as indicated by the three bottom rows in Fig. 4. For ex-
ample, for hybrid-GMM-matching, there is a clear scale-gap of 
scores between the 8th match (CG5525, score=0.018) and the 9th 
match (CG6051, score=0.008). Compared to the relative minor 
differences of score-scale of the OverlapRatio method (or the 
other two whole-embryo matching methods), our new methods 
indicate genes of the 2nd ~ 8th matches share significant stain 
features with the query gene, and the genes ranked worse than the 
8th match have only partial common stain features with the query 
gene. The large difference of score-scale is very useful in cluster-
ing similar images. These partially shared stain-traits can also be 
detected using the local-GMM-matching, as we plan to show in a 
future work. 
Experiments of this section indicate that our new methods, espe-
cially the hybrid method, are good for detecting similar embryo-
genesis SPs. 

7. FINDING CO-REGULATED GENES 
Based on the hybrid GMM matching method, we use the voting 
scheme in §5.2 to find genes for which the spatio-temporal ex-
pression patterns are similar. We use 4400 images of 136 genes 
from the BDGP website [1]. These genes have the largest number 
(greater than 30 each) of images in the database. The images are 
down sized to 400×200 pixels for the matching.  Different sizes 
are also tested with comparable results.  

An example of our preliminary analysis is given in Fig. 5, where 
the query is gene CG3136. Two genes, Ance and ush, are found to 
have similar spatio-temporal patterns for 5 or 6 embryo develop-
mental phases. Their similarity has not been previously reported 
in the literature to our knowledge. 

We visually compare the images of each developmental phase for 
the returned gene-pairs, and find that they do have similar expres-
sion staining patterns in almost every phase, as seen in Fig. 5. 
This visual evidence is further confirmed by the expert-
annotations from the BDGP database: CG3136 shares 1~3 annota-
tions with Ance (marked using a "♦") for any of phases 2~6, and 
1~2 annotations with ush (marked using a "♥") for each of phases 
2~5.  For example, for phase 3, the three genes have two common 
annotations "dorsal ectoderm anlage" and "procephalic ectoderm 
anlage". Accordingly, our method finds several well-matched 
images as shown in Fig. 5. For phase 1, the images are also very 
similar, but the annotations for Ance and ush are missing in the 
BDGP database. 

The large agreement between our results and the expert-
annotations indicates that our hybrid-GMM-matching and voting 

method is a meaningful way to detect genes with the similar spa-
tio-temporal SPs. This further suggests this method may be of 
utility in finding potentially co-regulated genes.  

In Fig. 5, we also show the microarray expression levels of the 
three genes during embryo development (the horizontal axis) [1]. 
It is clear that there is little correlation between the microarray 
expression levels of CG3136 and Ance, though they have similar 
in situ expression patterns. This indicates a simple comparison of 
microarray expression levels is not sufficient or suitable for de-
tecting potentially co-regulated genes. 
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